A Machine Learning Approach to Financial Forecasting: A Case Study
DOI:
https://doi.org/10.55549/epess.1412722Keywords:
Stock market, Machine learning, ForecastingAbstract
This paper undertakes a machine learning-based forecasting of a subset of financial processes pertaining to the stock market for a particular period in Turkey. There are various machine learning/artificial intelligence algorithms ranging from multilayer perceptron to support vector machines that can be used, with varying degrees of success, for forecasting purposes. The forecasting task to be undertaken in this paper will be carried out in contexts inclusive of a number of crisis-associated complexities generating unusual fluctuations in the financial markets. These fluctuations could pose, for traditional methods, significant difficulties that could be predictably overcome by machine learning/artificial intelligence algorithms which could escape a reasonable range of the possible complications that could be encountered. We will employ a number of algorithms which we will compare and contrast in accordance with a chosen performance metric. Not all algorithms perform equally well but some yield results that could be comfortably and successfully used for further analysis. Successful policy analyses addressing some of the essential intricacies of financial processes are of both theoretical and practical significance. They could produce considerable welfare improvements in emerging economies such as Turkey. Possible ways in which such improvements could be modeled are worthy of future research.Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 The Eurasia Proceedings of Educational and Social Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The articles may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Authors alone are responsible for the contents of their articles. The journal owns the copyright of the articles. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of the research material. All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations regarding the submitted work.